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TO FORMULATING A NONLINEAR INITIAL-BOUNDARY PROBLEM

OF AN UNSTEADY SEPARATED FLOW AROUND AN AIRFOIL

UDC 532.5: 533.6D. N. Gorelov

A general formulation of a nonlinear initial-boundary problem of an unsteady separated flow around
an airfoil by an ideal incompressible fluid is considered. The problem is formulated for a complex
velocity. Conditions of shedding of vortex wakes from the airfoil are analyzed in detail. The proposed
system of functional relations allows constructing algorithms for solving a wide class of problems of
the wing theory.
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Among problems of separated flows, of special importance is a wide class of problems associated with an
unsteady two-dimensional potential flow around an airfoil by an ideal incompressible fluid. Formulation of such
problems and methods of their solution depend on many factors, the main ones being the flow regime (non-separated
or separated) and the airfoil shape (closed or open). In addition, the flow around a smooth contour without corner
points and the flow around a contour with one or several corner points should be distinguished. Intense theoretical
investigations in this direction have been performed since the middle of the 20th century. Various mathematical
models have been proposed (see, e.g., [1–10]), but the problem of an unsteady separated flow has not been solved
yet.

The present paper deals with issues associated with formulation of a nonlinear initial-boundary problem of
an unsteady two-dimensional potential flow around an airfoil. Particular attention is paid to modeling vortex wakes
and analyzing the conditions of vortex-wake shedding from the airfoil.

1. FORMULATION OF THE PROBLEM

We use a Cartesian coordinate system Oxy, in which the fluid at an infinite point moves with a velocity v∞.
We assume that the fluid contains an airfoil L(t) with one corner point, which starts moving at the time t = 0
with a velocity U(x, y, t), (x, y) ∈ L(t). In the general case, the velocity circulation Γ(t) around the airfoil changes
with time, generating a vortex wake in a non-separated flow or vortex wakes in a separated flow around the airfoil.
The vortex wakes are simulated by lines of tangential discontinuities Lw(t) [or Lw1(t) and Lw2(t)], along which the
tangential component of velocity is discontinuous (Fig. 1). The fluid motion outside the airfoil and vortex wakes is
assumed to be potential.

The potential character of the flow allows us to consider a complex velocity v̄(z, t) = vx(x, y, t)− ivy(x, y, t),
where z = x + iy. The initial-boundary problem for the complex velocity can be formulated as follows. In the flow
domain outside the airfoil L(t) and vortex wakes Lwp(t) (p = 1, 2), the complex velocity v̄(z, t) is an analytical
function satisfying the boundary conditions of decaying of the disturbed velocity at an infinite point and fluid non-
penetration through the airfoil contour, as well as the conditions of continuity of pressure and the normal component
of velocity across the vortex wakes. The flow domain where the function v̄(z, t) is determined is unknown beforehand
and changes with time. The boundaries of the flow domain and the velocity field of the fluid are set as the initial
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Fig. 1. Models of an unsteady flow around an airfoil: non-separated flow (a) and separated flow (b).

conditions at the time t = 0. For t < 0, it is usually assumed that the airfoil is motionless (U = 0), the flow is
steady, and there are no vortex wakes.

The airfoil contour and the vortex wakes are modeled by vortex layers (it is assumed that a closed contour
contains the fluid moving together with the contour). The complex velocity v̄(z, t) is described by the expression

v̄(z, t) = v̄∞ + Δv̄(z, t) +
1

2πi

∫
L(t)

γ(s, t) ds

z − ζ(s, t)
, ζ(s, t) ∈ L(t),

Δv̄(z, t) =
Nw∑
p=1

1
2πi

∫
Lwp(t)

γwp(σ, t) dσ

z − ζwp(σ, t)
, ζwp(σ, t) ∈ Lwp(t).

(1.1)

Here Δv̄(z, t) is the complex velocity induced by vortex wakes Lwp(t) shed from the contour L(t), Nw and
γwp(σ, t) are the number of vortex wakes and their intensity, respectively, γ(s, t) is the intensity of the vortex layer
modeling the contour L(t), and s and σ are the arc coordinates. Integration over the contour L(t) in Eqs. (1.1) is
performed in the clockwise direction, and the arc coordinate σ on the vortex wakes is counted from the point of
vortex shedding from the contour L(t) along each vortex wake Lwp(t).

Equations (1.1) satisfy the condition of decaying of the disturbed velocity at an infinite point, because
v̄(z, t) = v̄∞ as |z| → ∞. The requirement that the condition of fluid non-penetration through the contour L(t)
should be satisfied yields two singular integral equations of the second and first kind, respectively [10]:

1
2

γ(s, t) + Re
[
eiθ(z,t)

(
v̄∞ + Δv̄(z, t) +

1
2πi

∫
L(t)

γ(s, t) ds

z − ζ(s, t)
− Ū(z, t)

)]
= 0, z ∈ L(t); (1.2)

Im
[
eiθ(z,t)

(
v̄∞ + Δv̄(z, t) +

1
2πi

∫
L(t)

γ(s, t) ds

z − ζ(s, t)
− Ū(z, t)

)]
= 0, z ∈ L(t). (1.3)

Equations (1.2) and (1.3) may be solved independently. The sought function in these equations is the vortex-
layer intensity γ(s, t) on the contour L(t). The vortex-wake intensities γwp(σ, t) and the wakes Lwp(t) that enter
Eqs. (1.1) are related to γ(s, t) by additional expressions.

Concerning the boundary conditions on vortex wakes, they are satisfied if the vortex wakes move freely with
the fluid. This occurs if the complex coordinate zwp(σ, t) of the vortex shed from the point z∗p of the airfoil contour
at a certain time τ (0 ≤ τ < t) is found by solving the nonlinear differential equation

dz̄wp

dt
= v̄0(zwp, t) (1.4)

with the initial condition z̄wp(0, τ) = z̄∗p(τ), where τ ∈ [0, t), and a prescribed velocity field at the time τ . Here τ

is a Lagrangian coordinate of the vortex considered and v̄0(zw, t) is the complex velocity of vortices in the wake,
which is equal to the halved sum of the limiting values of the complex velocity v̄(z, t) in approaching the point
zwp ∈ Lwp.
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Fig. 2. Schematic for determining the velocity-potential discontinuity at the
point M of the vortex wake.

Equation (1.4) is nonlinear, and its solution depends on the entire history of airfoil motion. These are the
specific features and difficulties of the problem considered. Problems of this type are currently solved with the
use of discretization in time [9], which allows one to reduce the original problem with time-dependent unknown
boundaries to consecutive solution of boundary-value problems in fixed domains for several times t1, . . . , tn. Thus,
the initial-boundary problem reduces to solving two problems. One of them is the Cauchy problem associated with
solving the nonlinear differential equation (1.4) for the time tn with the initial conditions set at the time tn−1. The
other problem is the boundary-value problem for the time tn under consideration. In this case, all boundaries of the
flow domain are assumed to be known. The boundary-value problem reduces to solving one of the linear integral
equations (1.2) or (1.3) for a closed contour or to solving the integral equation of the first kind (1.3) for an open
contour (arc). Equations (1.2) and (1.3) are normally solved by the method of discrete vortices or by the panel
method [9]. A comparative analysis shows that the panel method for closed contours predicts more reliable results,
in particular, in solving the integral equation of the second kind [11].

2. RELATIONS ON THE WAVE VORTEX

Let us derive additional relations between the characteristics of the vortex wakes with the intensity of the
vortex layer on the airfoil contour L(t). First, we have to determine the discontinuity of the velocity potential
ϕ(x, y, t) at the transition across the vortex wake. We denote the limiting values of the velocity potential in
approaching the point M ∈ Lwp by ϕ+(M, t) and ϕ−(M, t). We consider an arbitrary contour C, which covers the
vortex wake Lwp and crosses the latter one time at a point M (Fig. 2). Velocity circulation over the contour C is
ΓC = ϕ+(M, t) − ϕ−(M, t). Let us consider a closed contour composed of the contour C and the edges of the cut
made along the vortex wake Lwp. This contour does not cross the vortex wake, and velocity circulation over this
contour equals zero. The fluid velocities at the cut edges are v+

σ (σ, t) and v−σ (σ, t), respectively, and the difference
in these velocities determines the vortex-wake intensity:

γwp(σ, t) = v−σ (σ, t) − v+
σ (σ, t). (2.1)

With allowance for Eq. (2.1), the velocity-potential discontinuity at the point M ∈ Lwp is determined by
the formula

ϕ+(M, t) − ϕ−(M, t) =

lwp∫
σM

γwp(σ, t) dσ, (2.2)

where σM is the arc coordinate of the point M and lwp is the length of the vortex wake Lwp at the time t. To
obtain another important relation on the vortex wake, we use the condition of continuity of the pressure p(x, y, t)
across Lwp. The pressure is determined by the Cauchy–Lagrange integral, which can be transformed to the following
form at the points of the vortex wake Lwp [12]:

p = −ρ
(δϕ

δt
+

1
2

(vσ − veσ)2 − 1
2

v2
e

)
+ C(t). (2.3)
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Here the operator δ/δt determines the derivative with respect to time t at the point M ∈ Lwp moving with the
transport velocity ve; C(t) is an arbitrary function of time. It follows from Eqs. (2.1) and (2.3) that the pressure
difference at the points of the vortex wake is

p+ − p− = −ρ
( δ

δt
(ϕ+ − ϕ−) +

1
2

[
(v+

σ − veσ)2 − (v−σ − ves)2
])

= −ρ
( δ

δt
(ϕ+ − ϕ−) + γwp(veσ − v0σ)

)
, v0σ =

v+
σ + v−σ

2
. (2.4)

Let the point M move along the vortex wake Lwp with a velocity v0σ . In this case, the transport velocity
of the point M is veσ = v0σ . Then, in accordance with Eqs. (2.2) and (2.4), the condition of pressure continuity
across the vortex wake Lwp is satisfied if

δ

δt
[ϕ+(M, t) − ϕ−(M, t)] =

d

dt

lwp∫
σM

γwp(σ, t) dσ = 0. (2.5)

It should be noted that the velocity v0σ at the point M ∈ Lwp is determined by Eqs. (1.1) where the
corresponding singular integral is understood in the sense of the Cauchy principal value. It is with this velocity
that the vortices move along the vortex wake, which is described by Eq. (1.4).

Let us consider Eq. (2.5) for two arbitrary points M1 ∈ Lwp and M2 ∈ Lwp moving together with the fluid
along the vortex wake. Subtracting one expression from the other, we obtain

σ2∫
σ1

γwp(σ, t) dσ = const, (2.6)

where σ1(t) and σ2(t) are the arc coordinates of the points M1 and M2. Equation (2.6) implies that the total
intensity of an arbitrary element of the vortex wake whose points move together with the fluid remains constant
during the entire time of its motion. The element itself is deformed thereby; its length and vortex intensity γwp(σ, t),
σ1(t) < σ < σ2(t) become different.

Equation (2.6) forms the basis for mathematical modeling of vortex wakes by a system of free discrete vortices
shed from an airfoil during a certain small time interval. Such a discrete model of the vortex wake is widely used
in calculations, starting from [1].

Equation (2.6) allows us to conclude that the intensity of the vortex wake Lwp is determined by the intensity
of this wake at the point of its shedding from the contour L(t).

3. CONDITIONS AT THE POINTS
OF VORTEX-WAKE SHEDDING FROM THE CONTOUR

3.1. General Condition. The vortex wakes Lwp(t) are supplemented by vortices shed from the contour
at certain points z∗p(t) with the arc coordinates s∗p(t). These points may be fixed on the contour L(t) and move
together with the contour with a complex velocity Ū(z∗p, t) or move along the contour with a certain velocity
ds∗p(t)/dt. Fixed points are usually located at the sharp or angular edge on the contour, whereas moving points
are located on smooth portions of the contour L(t). In the wake proper, the vortices move with a complex veloc-
ity v̄0(zwp, t) equal to the halved sum of the limiting values of the fluid velocity on different sides of the wake. The
vortex-shedding velocity is determined by the relative velocity, which is the difference between the absolute velocity
of vortices in the wake [at the point z∗p(t)] and the transport velocity of the shedding point. Vortex shedding occurs
tangentially to the contour; therefore, the vortex-shedding velocity wp(t) from the contour L(t) to the wake Lwp(t)
is determined by the expression

wp(t) = v0σ(s∗p, t) − veσ(s∗p, t) (p = 1, . . . , Nw), (3.1)

where veσ(s∗p, t) is the transport velocity of the shedding point equal to the absolute velocity of this point in the
original Cartesian coordinate system. It should be noted that vortex shedding from the contour is possible only for
wp(t) > 0.
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Fig. 3. Shedding of the wave vortex from a sharp edge (a), from an angular edge (b), and from a
point on a smooth contour (c).

Let us derive a general expression relating the intensity of the shed vortices γwp(0, t), velocity of their shedding
wp(t), and velocity circulation Γp(t) around the vortex wake Lwp(t). For this purpose, we consider Eq. (2.4) assuming
that the point M → z∗p from the vortex-wake boundary (σM → 0). Setting the pressure-continuity condition at
this point and using Eqs. (2.2) and (3.1), we obtain the general expression at the point of vortex shedding from the
contour

d

dt
Γp(t) = γwp(0, t)wp(t), p = 1, . . . , Nw.

Using Kelvin’s theorem on a constant velocity circulation around a closed fluid contour, we can write another
expression

d

dt
Γ(t) +

Nw∑
p=1

d

dt
Γp(t) = 0, Γ(t) =

∫
L(t)

γ(s, t) ds,

which relates the shedding velocities and intensities of the shed vortex wakes to velocity circulation over the contour
L(t).

Let us consider the conditions of vortex shedding to the wake for shedding points of different types in more
detail.

3.2. Sharp Edge. On a sharp edge (at the cuspidal point), the tangential line to the vortex wake
Lwp(t) coincides with the tangential line to the contour L(t) ahead of the edge and is directed opposite to the
latter behind the edge. Therefore, v+

σ (0, t) = v+
s (s∗p − 0, t), and v−σ (0, t) = −v+

s (s∗p + 0, t). From Eq. (2.1) and
γ(s, t) = v−s (s, t) − v+

s (s, t), it follows that the intensity of the shed vortices is found as

γwp(0, t) = γ(s∗p − 0, t) + γ(s∗p + 0, t). (3.2)

Similarly, we obtain the expression for the absolute velocity of vortices entering the wake:

v0σ(s∗p, t) =
v+

s (s∗p − 0, t) − v+
s (s∗p + 0, t)

2
= Uσ(s∗p, t) − γ(s∗p − 0, t) − γ(s∗p + 0, t)

2
. (3.3)

The transport velocity of the shedding point is determined as veσ(s∗p, t) = Uσ(s∗p, t). Hence, the velocity of
vortex shedding from a sharp edge is

wp(t) = v0σ(s∗p, t) − veσ(s∗p, t) = −[γ(s∗p − 0, t) − γ(s∗p + 0, t)]/2. (3.4)

3.3. Angular Edge. In the case of an angular edge, vortex shedding occurs tangentially to one of the
contour sides, depending on the sign of the derivative dΓp(t)/dt (Fig. 3).

For an angular edge, relations (3.2)–(3.4) remain unchanged. In the vicinity of the corner point, one of
the streamline emanating from the contour has an inflection, and the relative velocity of the fluid at the inflection
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point is zero. In the case of vortex shedding from the upper face, the streamline inflection occurs at the point of
intersection of the lower face with the vortex wake. As a result, the relative velocity of the fluid at the lower corner
point vrσ, the intensity of vortices entering the wake γwp, the velocity of vortex shedding wp, and the derivative
dΓp/dt are described by the relations

vrσ(s∗p + 0, t) = v+
σ (s∗p + 0, t) − Uσ(s∗p, t) = γ(s∗p + 0, t) = 0,

γwp(0, t) = γ(s∗p − 0, t), wp(t) = −γ(s∗p − 0, t)/2, (3.5)

d

dt
Γp(t) = −1

2
γ2(s∗p − 0, t) < 0.

Similarly, vortex shedding from the lower face is described by the equations

vrσ(s∗p − 0, t) = v+
σ (s∗p − 0, t) − Uσ(s∗p, t) = −γ(s∗p − 0, t) = 0,

γwp(0, t) = γ(s∗p + 0, t), wp(t) = γ(s∗p + 0, t)/2, (3.6)

d

dt
Γp(t) =

1
2

γ2(s∗p + 0, t) > 0.

3.4. Smooth Contour. The point on a smooth contour may be considered as the limiting case of a
corner point, with the only difference that the vortex-wake shedding point can move along the contour L(t) with a
velocity ṡ∗p. As a result, the transport velocity of the shedding point is

veσ(s∗p, t) =

{
Uσ(s∗p, t) + ṡ∗p(t), dΓp/dt < 0,

Uσ(s∗p, t) − ṡ∗p(t), dΓp/dt > 0.
(3.7)

With allowance for Eq. (3.7), relations (3.5) and (3.6) for a smooth contour transform to the equations

d

dt
Γp(t) < 0: vrσ(s∗p + 0, t) = γ(s∗p + 0, t) − ṡ∗p(t) = 0,

γwp(0, t) = γ(s∗p − 0, t) + ṡ∗p(t), wp(t) = −[γ(s∗p − 0, t) + ṡ∗p]/2,

d

dt
Γp(t) > 0: vrσ(s∗p − 0, t) = γ(s∗p − 0, t) + ṡ∗p(t) = 0,

γwp(0, t) = γ(s∗p + 0, t) + ṡ∗p(t), wp(t) = [γ(s∗p + 0, t) + ṡ∗p]/2.

Determining the arc coordinate s∗p(t) of the point of vortex-wake shedding from a smooth contour is a
difficult task. The basic criterion of vortex-wake shedding was proposed in [12]: it implies vanishing of the tangential
component of the pressure gradient along the contour at the shedding point. For this condition to be valid, the arc
coordinate of the shedding point should satisfy the equation

U̇s(s∗p, t) − γ̇(s∗p − 0, t) + [γ(s∗p − 0, t) + ṡ∗p(t)]
∂

∂s
γ(s, t)

∣∣∣
s=s∗p−0

− [Us(s∗p, t) + ṡ∗p(t)]
∂

∂s
Us(s, t)

∣∣∣
s=s∗p

− Un(s∗p, t)
∂

∂s
Un(s, t)

∣∣∣
s=s∗p

= 0 (3.8)

for dΓp/dt < 0 or

U̇s(s∗p, t) − γ̇(s∗p + 0, t) + [γ(s∗p + 0, t) + ṡ∗p(t)]
∂

∂s
γ(s, t)

∣∣∣
s=s∗p+0

− [Us(s∗p, t) + ṡ∗p(t)]
∂

∂s
Us(s, t)

∣∣∣
s=s∗p

− Un(s∗p, t)
∂

∂s
Un(s, t)

∣∣∣
s=s∗p

= 0 (3.9)

for dΓp/dt > 0.
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Equations (3.8) and (3.9) are nonlinear differential equations of the first order with respect to s∗p(t). The
initial conditions are determined by setting the arc coordinates s∗p(0) of the points on the contour L, where the
hydrodynamic pressure reaches a local minimum in a steady flow and ṡ∗p(0) = 0. The functions Us(s, t), and Un(s, t)
are prescribed, and the intensity of the vortex layer γ(s, t) is determined by solving the corresponding nonlinear
initial-boundary problem, which, in turn, depends on the position s∗p(t) of flow-separation points and velocity of
their motion ṡ∗p(t). Thus, Eqs. (3.8) and (3.9) are only some of the nonlinear equations that are to be solved jointly
for a particular initial-boundary problem of an unsteady separated flow around a smooth contour.

3.5. Kutta–Joukowski–Chaplygin Postulate. Shedding of the vortex wake from a sharp or angular
edge ensures fulfillment of this postulate, because the fluid velocity at these edges remains finite during the entire
time of motion of the contour. Rigorous satisfaction of conditions (3.5) and (3.6) at the corner point of the contour,
however, leads to a paradox: the solution of the problem of an unsteady flow around a contour with an infinitesimal
angle between the tangential lines at the corner point in the limiting case does not transform to the solution of the
problem with a sharp edge (in the form of a cuspidal point) [10, 13]. This paradox is a consequence of restrictions
of the ideal fluid model, which admits inflections of the streamlines in the neighborhood of the angular edge.
Adaptation of this model by local replacement of an angular edge by a sharp edge yields physically meaningful
results. It should be noted that such an adaptation is automatically included into calculation algorithms that
do not require exact satisfaction of the condition of a zero relative velocity at the corner point on the streamline
(e.g., if the vortex wake is modeled by a system of discrete vortices). A numerical experiment showed that local
replacement of a corner point by a sharp point allows problems of the flow around contours of various shapes,
including a circumference, to be effectively solved.

CONCLUSIONS

An attempt has been made to rigorously derive the governing equations and relations for a wide class of
nonlinear initial-boundary problems of the wing theory in a two-dimensional unsteady flow of an ideal incompressible
fluid. The results obtained make it possible to formulate particular problems and construct appropriate algorithms
for solving them. Special attention is paid to an analysis of conditions of vortex-wake shedding from the contour,
which are supplementary to the boundary and initial conditions. These conditions relate the intensities of vortex
wakes to the intensities of the vortex layer on the airfoil contour, which allows closing the system of equations in
the algorithm for solving a particular problem.
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